Kostenlos ausprobieren
tab list
Rock Identifier
Deutsch
arrow
English
繁體中文
日本語
Español
Français
Deutsch
Pусский
Português
Italiano
한국어
Nederlands
العربية
HOME Anwendung herunterladen FAQ
Deutsch
English
繁體中文
日本語
Español
Français
Deutsch
Pусский
Português
Italiano
한국어
Nederlands
العربية

Zeolithgruppe

Zeolite

Eine Art der Mineral

Als Zeolithgruppe bezeichnet man eine artenreiche Familie wasserhaltiger Gerüstsilikate, die bis zu 40 Prozent des Trockengewichtes an Wasser enthalten, das beim Erhitzen abgegeben wird. An feuchter Luft kann das Wasser wieder aufgenommen werden, ohne die Struktur des Minerals zu zerstören. Aus chemischer Sicht gehören diese Mineralien zur Stoffgruppe der Zeolithe. Die aktuelle Definition der CNMNC der IMA ist etwas allgemeiner gefasst und schließt auch die Phosphatminerale Pahasapait und Weinebeneit sowie das Gerüstsilikat Leucit mit ein: Ein Zeolith-Mineral ist eine kristalline Substanz, deren Struktur charakterisiert ist durch ein Gerüst aus eckenverknüpften Tetraedern. Jeder Tetraeder besteht aus vier Sauerstoffatomen, die ein Kation umgeben. Das Gerüst kann durch OH- und F-Gruppen unterbrochen sein, die die Tetraederspitzen besetzen, jedoch nicht mit benachbarten Tetraedern geteilt werden. Das Gerüst enthält offene Hohlräume in Form von Kanälen und Käfigen. Diese werden üblicherweise durch H2O-Moleküle und weitere Kationen besetzt, die häufig austauschbar sind. Die Kanäle sind groß genug, um den Durchgang von Gastmolekülen zu ermöglichen. In den wasserhaltigen Phasen tritt Entwässerung bei Temperaturen meist unter etwa 400 °C auf und ist weitgehend reversibel. Zeolithe sind meist farblos oder weiß, können aber durch Fremdbeimengungen auch gelb, braun oder rosa gefärbt sein. Die Strichfarbe ist weiß. Die Kristallsysteme können monoklin, orthorhombisch oder kubisch sein. Ihre Mohshärte liegt zwischen 3,5 und 5,5 und ihre Dichte im Bereich von 2,0 bis 2,5 g/cm³.

Allgemeine Informationen über Zeolithgruppe

Steine sofort mit einem Schnappschuss identifizieren
Machen Sie ein Foto für eine sofortige Identifikation von Stein/Edelstein/Mineral und eine Analyse der Eigenschaften, erhalten Sie schnell Einblicke in Merkmale, Marktwert, Sammel-Tipps, Pflege, echt vs. falsch und Gesundheitsrisiken, usw.
Lade die App kostenlos herunter
qrcode
Img download isoImg download android

Eigenschaften von Zeolithgruppe

Ihr umfassender Leitfaden zu Steineigenschaften
Tiefgehende Erkundung von Steinarten, Merkmalen und Bildungsaspekten
Lade die App kostenlos herunter

Bildung von Zeolithgruppe

Zeolithe finden sich weltweit in intermediären bis basischen Vulkaniten. Sie bilden sich fast ausnahmslos sekundär, d. h. bei der Umwandlung pyroklastischer Sedimente in wasserreicher Umgebung bei Temperaturen unter 400 °C und Drücken unter 4 bis 5 kbar. Häufig füllen sie Hohlräume mit faserigen, nadeligen oder blattförmigen Kristallen. Primäre Bildungen sind nur für Analcim bekannt. Analcim kristallisiert auch direkt aus basaltischen Schmelzen in tiefliegenden Magmakammern bei Temperaturen um 600 °C und Drücken um 5–13 kbar. Zeolithe sind Leitminerale niedrig gradiger Metamorphose von intermediären bis basischen Gesteinen. Der Druck-Temperaturbereich der beginnenden Metamorphose wird nach dem Auftreten von Zeolithen Zeolithfazies genannt. Die Zeolith-Bildung wird im Wesentlichen von folgenden Faktoren kontrolliert: Zusammensetzung: Zeolithe bilden sich bei der Reaktion von Vulkaniten mit wässrigen Lösungen. Das Verhältnis von gelösten Si zu Al und der pH-Wert der Lösung sind die Hauptfaktoren, die kontrollieren, welche Zeolithe kristallisieren. In Lösungen mit hohem Si/Al- Verhältnis beginnt die Kristallisation mit Quarz, mit sinkenden Si/Al-Verhältnis und Ca-Konzentrationen gefolgt von Mordenit, Heulandit, Stilbit, Mesolith, Thomsonit, Chabasit und schließlich Kalzit. Dies gilt für geschlossene Systeme, in denen die Lösung nicht weiter mit dem Umgebungsgestein reagiert. In offenen Systemen, wie sie beim Durchfluss von meteorischen Wasser durch pyroklastische Gesteine vorherrschen, bilden sich bei hohen pH-Wert und Si/Al-Verhältnis Si-reicher Heulandit oder Erionit. Niedrige pH-Werte und Si/Al- Verhältnisse begünstigen die Bildung von Phillipsit. Temperatur: Zeolithbildung setzt bereits bei niedrigen Temperaturen von 4 °C ein. Mit steigenden Temperaturen, z. B. bei zunehmender Metamorphose, bilden sich unterschiedliche Zeolithe. Für basaltische Zusammensetzungen ist eine Abfolge von Stilbit (von 4 °C bis 180 °C) über Laumontit (von 150 °C bis 300 °C) zu Wairakit (von 250 °C bis 400 °C) verbreitet. Wairakit zersetzt sich ab 350 °C zu Anorthit, Quarz und Wasser. In Gesteinen basaltischer Zusammensetzung markiert diese Reaktion zusammen mit dem Abbau von Phrenit den Übergang von der Zeolithfazies zur Grünschieferfazies. In Na-reichen Umgebungen reagiert Analcim bei ca. 200 °C mit freiem SiO2 (Quarz) zu Albit und H2O. Diese Reaktion ist eine der Reaktionen, die den Übergang von der Diagenese zur Metamorphose markieren. Druck: Der Druck hat keinen wesentlichen Einfluss darauf, welche Zeolithe gebildet werden. Wegen ihrer porösen Struktur sind Zeolithe aber insgesamt nur bei niedrigen Drucken (P < 3 – 5 kbar) stabil. In basaltischen Gesteinen markiert der Abbau von Zeolithen mit steigenden Druck den Übergang von der Zeolithfazies zur Phrenit-Pumpeleit-Fazies. Wichtige Reaktionen dieser Faziesgrenze sind: Laumontit = Lawsonit + Quarz + Wasser (T < 250 °C und P > 3 kbar) Wairakit = Phrenit + Ca-Smektit + Wasser (250 °C < T < 400 °C, P > 2 kbar) In Natrium-reichen Gesteinen wird Analcim bei steigenden Druck umgewandelt in Jadeit: Analcim = Jadeit + Wasser (p > 3 – 5 kbar) Vorkommen sind von nahezu allen Vulkangebieten der Erde bekannt, so etwa aus dem Dekkan-Gebiet Indiens, aus Island, der Vulkaneifel oder den Azoren. Ferner ist Mount Adamson in der Antarktis Typlokalität und bisher (Stand 2020) einziger Fundort der Zeolithminerale Gottardiit, Mutinait und Terranovait.

Zusammensetzung von Zeolithgruppe

Zeolithe zeichnen sich strukturell durch eine geordnete, mikroporöse Gerüststruktur aus. Die primären Baueinheiten dieses Gerüstes sind TO4Tetraeder. Die T-Kationen sind so von vier Sauerstoffanionen (O) umgeben, dass die Zentren der Sauerstoffe auf den Ecken eines Tetraeders liegen, in dessen Mitte sich das Kation befindet. Untereinander sind die TO4-Tetraeder über die 4 Sauerstoffatome an den Tetraederecken zu einem Gerüst verbunden. Auf der T-Position wird vorwiegend Si und Al eingebaut, seltener P. Diese primären Baueinheiten können zu einer Vielzahl verschiedenster Gerüststrukturen verknüpft werden. Zeolithstrukturen weisen immer offene Hohlräume (Kanäle) und häufig auch geschlossene Käfige auf, in denen Stoffe adsorbiert werden können. Da nur Moleküle die Poren passieren können, die einen kleineren kinetischen Durchmesser besitzen als die Porenöffnungen der Zeolithstruktur, können Zeolithe als Siebe für Moleküle verwendet werden. In der Natur ist in den Kanälen in der Regel Wasser adsorbiert, das durch Erhitzen entfernt werden kann, ohne dass sich die Zeolithstruktur ändert. Gerüste, die ausschließlich aus SiO4-Tetraedern aufgebaut sind, sind elektrisch neutral. In allen natürlichen Zeolithen ist ein Teil des Siliciums durch Aluminiumionen (Al) ersetzt und die Alumosilikatgerüste haben negative (anionische) Gerüstladungen. Der Ladungsausgleich erfolgt durch Einlagerung von Kationen wie z. B. Na, K, Ca oder Mg in die Porenräume der Zeolithe. In wasserhaltigem Zeolith sind diese Kationen häufig wie in wässrigen Lösungen von einer Hydrathülle umgeben und leicht austauschbar. Zur Beschreibung der vielfältigen Strukturen der Alumosilikatgerüste und zur Illustration ihrer strukturellen Verwandtschaften werden verschiedene Sets von Baugruppen verwendet, aus denen man sich die Gerüste aufgebaut denken kann. Bei all diesen Baugruppen handelt es sich um hypothetische, nicht um physikalisch existierende Einheiten. Anders als z. B. bei den Silikatgruppen der Gruppen-, Ring- oder Kettensilikate, können diese Baugruppen nicht kristallchemisch, z. B. anhand von Art und Stärke der Bindungen, im Kristall abgegrenzt werden. Sie dienen der Beschreibung und illustrieren Gemeinsamkeiten der komplexen Strukturen.

Kulturelle Bedeutung von Zeolithgruppe

Ihr ultimativer Leitfaden zum Verständnis der Steinkultur
Die Geheimnisse der Steinkultur enthüllen - Anwendungen, Geschichte und heilende Eigenschaften erkunden, usw.
Lade die App kostenlos herunter

Verwendungsmöglichkeiten von Zeolithgruppe

Zeolithe eignen sich infolge der großen inneren Oberfläche für vielfältige technische Anwendungen. Siehe auch: Zeolithe (Stoffgruppe)#Verwendung

Etymologie von Zeolithgruppe

Die Geschichte der wissenschaftlichen Entdeckung der Zeolithe begann 1756 mit der ersten Beschreibung eines Zeolithes durch den schwedischen Mineralogen Baron Axel Fredrick von Cronstedt. Er beschrieb das charakteristische Verhalten der Minerale dieser Gruppe beim Erhitzen vor dem Lötrohr, ein lebhaftes Aufbrausen (Sieden) aufgrund der Freisetzung gebundenen Wassers. Er prägte daraufhin den Namen Zeolith – „siedender Stein“, abgeleitet aus dem griechischen ζέω zéō für „sieden“ und λίθος lithos für „Stein“. Die Entdeckung der zahlreichen Minerale der Zeolithgruppe begann im 19. Jahrhundert und in den Namen der Zeolithminerale und ihrer Entdecker zeichnet sich ein europäisches Netzwerk von Naturforschern und Sammlern ab, das bereits damals über alle Landes- und Sprachgrenzen hinweg zusammenarbeitete. Den Anfang machte 1792 Louis Augustin Guillaume Bosc mit der Erstbeschreibung des Chabasit, gefolgt von Jean-Claude Delamétherie, der die Zeolithe Andréolite (1795) und Zéolithe nacrée („perlmuttartiger Zeolith“, 1797) beschrieb. Beide wurden von René-Just Haüy 1801 erneut untersucht, genauer beschrieben und umbenannt, Andréolite in Harmotom und Zéolithe nacrée in Stilbit. Einmal dabei beschrieb Haüy im gleichen Jahr noch den Analcim. Martin Heinrich Klaproth entdeckte 1803 den Natrolith und 1808 benannte Haüy den von ihm sieben Jahre zuvor als „zeolithe efflorescente“ beschriebenen Zeolith um in Laumonit, in Anerkennung der Arbeit von Gillet de Laumont, der bereits 1785 die Mineralproben gesammelt hatte. Adolph Ferdinand Gehlen und Johann Nepomuk Fuchs erweiterten die Gruppe der Zeolithe um den Skolezit (1813) und Mesolith (1816 publiziert, 1 Jahr nach Gehlens Tod). Karl Cäsar von Leonhard ergänzte 1817 den Gismondin, den er nach dem italienischen Mineralogen Carlo Giuseppe Gismondi benannte. Gismondi, der erste Kurator des wenige Jahre zuvor gegründeten Mineralogischen Museums der Universität La Sapienza in Rom, hatte zuvor den Zeolith Zeagonit beschrieben, der sich jedoch als Gemisch aus Phillipsit und Gismondin erwies. Umgekehrt erging es Leonhard selbst als Johann Reinhard Blum 1843 den Zeolith Leonhardit nach ihm benannte. Leonhardit erwies sich dann aber als teilweise entwässerter, undurchsichtiger Laumontit und gilt heute als obsoletes Synonym für Laumontit. Henry James Brooke, ein studierter Jurist der als Geschäftsmann arbeitete und seine Freizeit der Mineralogie und Kristallographie widmete, identifizierte 1820 den Thomsonit (benannt nach dem Professor für Chemie an der Universität Glasgow Thomas Thomson) und Heulandit, benannt zu Ehren des britischen Sammlers und Mineralienhändlers Henry Heuland. Zwei Jahre später beschrieb er noch den Brewsterit, den er nach Sir David Brewster benannte. Brewster, Professor für Physik an der Universität St Andrews und ebenfalls mineralogisch tätig, entdeckte 1825 die Zeolithe Gmelinit, benannt nach dem Tübinger Chemiker und Mineralogen Christian Gottlob Gmelin und Lévyn. Mit der Benennung des Lévyn ehrte dieser seinen französischen Kollegen Armand Lévy, der im gleichen Jahr die Zeolithe Phillipsit und Herschelit (heute Chabasit-Na) beschrieb. Ebenfalls 1825 beschrieb Wilhelm von Haidinger noch den Edingtonit, den er nach seinem schottischen Entdecker James Edington benannte. Es folgten Epistilbit (Gustav Rose 1826), Faujasit (Augustin Alexis Damour 1842), Pollucit (August Breithaupt 1846) und Mordenit (Henry How 1864). 1890 entdeckte Pierre Joseph Ferdinand Gonnard den Offretit und wurde 1896 von Antoine Lacroix geehrt, der den von ihm entdecken Zeolith Gonnardit nach ihm benannte. Im 20. Jahrhundert wurden noch zahlreich weitere Zeolithe beschrieben, darunter Ferrierit (Richard Percival Devereux Graham 1918), Wairakit (A. Steiner 1955), Bikitait (C. S. Hurlbut 1957) und Cowlesit (Wise und Tschernich 1975). Tschernich war 1990 auch beteiligt an der Entdeckung des Boggsit, benannt nach den Sammlern Robert Maxwell Boggs und seinem Sohn Russel Calvin Boggs. Letzterer revanchierte sich 1992 mit der Namensgebung des von ihm und Howard, Smith und Klein beschriebenen Tschernichit.

Häufig gestellte Fragen

Schnelle Antworten auf Steine mit einem Schnappschuss erhalten
Machen Sie ein Foto für eine sofortige Steinidentifikation und Antworten zu Merkmalen, Marktwert, Sammel-Tipps, Pflege, echt vs. falsch und Gesundheitsrisiken, usw.
Lade die App kostenlos herunter