Try for Free
tab list
Rock Identifier
English
arrow
English
繁體中文
日本語
Español
Français
Deutsch
Pусский
Português
Italiano
한국어
Nederlands
العربية
Home Application Download FAQ
English
English
繁體中文
日本語
Español
Français
Deutsch
Pусский
Português
Italiano
한국어
Nederlands
العربية
Scapolite
Scapolite
Scapolite
Scapolite

Scapolite

Scapolite

A species of Scapolite Group

When polished and prepared for jewelry, scapolite is as beautiful as many of the more commonly known gemstones. Prime examples can possess a tiger-eye pattern, making a stellar showcase. It is found among other calcium-rich rocks like marble. Although these minerals are widespread, gemstone-quality specimens are rare.

Hardness
Hardness:

5.5 - 6

Density
Density:

2.56 - 2.77 g/cm³

General Info About Scapolite

Instantly Identify Rocks with a Snap
Snap a photo for instant rock/gemstone/mineral ID and properties analysis, gaining quick insights on characteristics, market value, collecting tips, care, real vs fake, and health risks, etc.
Download the App for Free

Physical Properties of Scapolite

Luster
Vitreous
Diaphaneity
Transparent to translucent
Colors
Yellow, rose-pink, violet, colorless, white, orange, green
Magnetism
Non-magnetic
Tenacity
Brittle
Cleavage
Good
Fracture
Conchoidal, Uneven
Streak
White
Crystal System
Tetragonal
Hardness
5.5 - 6 , Hard
Density
2.56 - 2.77 g/cm³, Normal Weight
qrcode
Img download isoImg download android

Chemical Properties of Scapolite

Chemical Classification
Silicates
Formula
Na4Al3Si9O24Cl to Ca4Al6Si6O24CO3
Common Impurities
Fe, Ca, K, S

Optical Properties of Scapolite

Refractive Index
1.540-1.579
Birefringence
0.006-0.037
Pleochroism
Pink stones - distinct: colorless, pink; Yellow stones - distinct: colorless to yellowish, yellow; Violet/purple stones - strong: violet-blue, dark blue
Dispersion
0.017
Optical Character
Uniaxial negative

Discover the Value of Scapolite

Discovering the Diverse Values of Rocks
Unveiling the Rarity, Aesthetics, and Economic Significance of Rocks
Download the App for Free
Rarity
Rare

Characteristics of Scapolite

Your Comprehensive Rock Characteristics Guide
In-depth exploration of rock types, features, and formation aspects
Download the App for Free

Rock Types of Scapolite

According to their genesis the scapolite rocks fall naturally into four groups.
Limestones and contact metamorphic rocks
The scapolite limestones and contact metamorphic rocks. As silicates rich in calcium, it is to be expected that these minerals will be found where impure limestones have been crystallized by contact with an igneous magma. Even marialite (the variety richest in soda) occurs in this association, being principally obtained in small crystals lining cavities in ejected blocks of crystalline limestone at Vesuvius and the craters of the Eifel in Germany. Scapolite and wernerite are far more common at the contacts of limestone with intrusive masses. The minerals that accompany them are calcite, epidote, vesuvianite, garnet, wollastonite, diopside and amphibole. The scapolites are colorless, flesh-colored, grey or greenish; occasionally they are nearly black from the presence of very small enclosures of graphitic material. They are not in very perfect crystals, though sometimes incomplete octagonal sections are visible; the tetragonal cleavage, strong double refraction and uniaxial interference figure distinguish them readily from other minerals. Commonly they weather to micaceous aggregate, but sometimes an isotropic substance of unknown nature is seen replacing them. In crystalline limestones and calc–silicate rocks they occur in small and usually inconspicuous grains mingled with the other components of the rock. Large, nearly idiomorphic crystals are sometimes found in argillaceous rocks (altered calcareous shales) that have suffered thermal metamorphism. In the Pyrenees there are extensive outcrops of limestone penetrated by igneous rocks described as ophites (varieties of diabase) and lherzolites (peridotites). At the contacts scapolite occurs in a great number of places, both in the limestones and in the calcareous shales that accompany them. In some of these rocks large crystals of one of the scapolite minerals (an inch or two in length) occur, usually as octagonal prisms with imperfect terminations. In others the mineral is found in small irregular grains. It is sometimes clear, but often crowded with minute enclosures of augite, tourmaline, biotite and other minerals, such as constitute the surrounding matrix. From these districts also a black variety is well known, filled with minute graphitic enclosures, often exceedingly small and rendering the mineral nearly opaque. The names couzeranite and dipyre are often given to this kind of scapolite. Apparently the presence of chlorine in small quantities, which may often be detected in limestones, to some extent determines the formation of the mineral.
Mafic igneous rocks
In many mafic igneous rocks, such as gabbro and diabase, scapolite replaces feldspar by a secondary or metasomatic process. Some Norwegian scapolite-gabbros (or diorite) examined microscopically furnish examples of every stage of the process. The chemical changes involved are really small, one of the most important being the assumption of a small amount of chlorine in the new molecule. Often the scapolite is seen spreading through the feldspar, portions being completely replaced, while others are still fresh and unaltered. The feldspar does not weather, but remains fresh, and the transformation resembles metamorphism rather than weathering. It is not a superficial process, but apparently takes place at some depth under pressure, and probably through the operation of solutions or vapours containing chlorides. The basic soda-lime feldspars (labradorite to anorthite) are those that undergo this type of alteration. Many instances of scapolitization have been described from the ophites (diabases) of the Pyrenees. In the unaltered state these are ophitic and consist of pyroxene enclosing lath-shaped plagioclase feldspars; the pyroxene is often changed to uralite. When the feldspar is replaced by scapolite the new mineral is fresh and clear, enclosing often small grains of hornblende. Extensive recrystallization often goes on, and the ultimate product is a spotted rock with white rounded patches of scapolite surrounded by granular aggregates of clear green hornblende: in fact the original structure disappears.
Scapolite-hornblende rocks
In Norway scapolite-hornblende rocks have long been known at Ødegården and other localities. They have been called spotted gabbros, but usually do not contain feldspar, the white spots being entirely scapolite while the dark matrix enveloping them is an aggregate of green or brownish hornblende. In many features they bear a close resemblance to the scapolitized ophites of the Pyrenees. It has been suggested that the conversion of their original feldspar (for there can be no doubt that they were once gabbros, consisting of plagioclase and pyroxene) into scapolite is due to the percolation of chloride solutions along lines of weakness, or planes of solubility, filling cavities etched in the substance of the mineral. Subsequently the chlorides were absorbed, and the feldspar was transformed into scapolite. But it is found that in these gabbros there are veins of a chlorine-bearing apatite, which must have been deposited by gases or fluids ascending from below. This suggests that a pneumatolytic process has been at work, similar to that by which, around intrusions of granite, veins rich in tourmaline have been formed, and the surrounding rocks at the same time permeated by that mineral. In the composition of the active gases a striking difference is shown, for those that emanate from the granites are mainly fluorine and boron, while those from the gabbro are principally chlorine and phosphorus. In one case the feldspar is replaced by quartz and white mica (in greisen) or quartz and tourmaline (in schorl rocks); in the other case scapolite is the principal new product. The analogy is a very close one, and this theory receives much support from the fact that in Canada (at various places in Ottawa and Ontario) there are numerous valuable apatite vein deposits. They lie in basic rocks such as gabbro and pyroxenite, and these in the neighborhood of the veins have been extensively scapolitized, like the spotted gabbros of Norway.
Metamorphic rocks of gneissose character
In many parts of the world metamorphic rocks of gneissose character occur containing scapolite as an essential constituent. Their origin is often obscure, but it is probable that they are of two kinds. One series is essentially igneous (orthogneisses); usually they contain pale green pyroxene, a variable amount of feldspar, sphene, and iron oxides. Quartz, rutile, green hornblende and biotite are often present, while garnet occurs sometimes; hypersthene is rare. They occur along with other types of pyroxene gneiss, hornblende gneiss, amphibolites, etc. In many of them there is no reason to doubt that the scapolite is a primary mineral. Other scapolite gneisses equally metamorphic in aspect and structure appear to be sedimentary rocks. Many of them contain calcite or are very rich in calc-silicates (wollastonite, diopside, etc.), which suggests that they were originally impure limestones. The frequent association of this type with graphitic-schists and andalusite-schists makes this correlation in every way probable. Biotite is a common mineral in these rocks, which often contain also much quartz and alkali feldspar.

Characteristics of Scapolite

The group is an isomorphous mixture of the meionite and marialite endmembers. The tetragonal crystals are hemihedral with parallel faces (like scheelite), and at times of considerable size. They are distinct and usually have the form of square columns, some cleavages parallel to the prism-faces. Crystals are usually white or greyish-white and opaque, though meionite is found as colorless glassy crystals in the ejected limestone blocks of Monte Somma, Vesuvius. The hardness is 5–6, and the specific gravity varies with the chemical composition between 2.7 (meionite) and 2.5 (marialite). The scapolites are especially liable to alteration by weathering processes, with the development of mica, kaolin, etc., and this is the cause of the usual opacity of the crystals. Owing to this alteration, and to the variations in composition, numerous varieties have been distinguished by special names. Scapolite is commonly a mineral of metamorphic origin, occurring usually in crystalline marbles, but also with pyroxene in schists and gneisses. The long slender prisms abundant in the crystalline marbles and schists in the Pyrenees are known as dipyre or couzeranite. Large crystals of common scapolite (wernerite) are found in the apatite deposits in the neighborhood of Bamble near Brevik in Norway, and have resulted from the alteration of the plagioclase of a gabbro.

Cultural Significance of Scapolite

Your Ultimate Guide to Understanding Rock Culture
Unveiling the mysteries of rock culture - exploring uses, history, and healing properties, etc
Download the App for Free

Uses of Scapolite

Scapolite is too rare to be used industrially. However, it makes for unique gemstones that are popular for collecting and for jewelry. It is typically used in jewelry that is less likely to be damaged, such as earrings, due to the softness of this mineral.

Healing Properties of Scapolite

Scapolite is a stone that is believed to release energies for problem solving and achievement. It works with all of the chakras to remove any blockages and provide for a free flow of positive energy. It is said to be excellent when used in one's professional or personal life. Its positive flow of energy also helps to relieve the user of doubt, confusion and unnecessary stress, giving them a feeling of confidence in the face of challenge or adversity.
Chakras
Root, Sacral, Solar Plexus, Heart, Throat, Third Eye, Crown

Common Questions People Also Ask

Get Quick Rock Answers with a Snap
Snap a photo for instant rock ID and answers on characteristics, market value, collecting tips, care, real vs fake, and health risks, etc.
Download the App for Free

More Rocks You Might Enjoy

Img topic
Siderite
Siderite is an economically-important mineral that is often mined as an ore of iron. The mineral is also sometimes called "Chalybite", especially when it comes from Cornwall, England. Siderite crystals, which are typically tan, grey, yellow, or honey-colored, are soft and brittle - although the occasional exceptional specimen may be carved into a gemstone, sought after only by highly specialized collectors.
Read More
Arrow
Img topic
Linarite
Sometimes forming in large copper deposits, linarite's tiny crystals are only a minor copper source. This mineral bears a striking resemblance to Azurite and even occurs in the same places, so extra steps are needed for proper identification. No specimen has ever been found large enough to carve into a gemstone, but the raw crystal formations can make a stunning collector's piece.
Read More
Arrow
Img topic
Brookite
Brookite almost always appears together with Quartz; it's sometimes completely hidden in the Quartz mineral. It is a rare collector's mineral, particularly its variety called Arkansite, a black and opaque brookite found in Magnet Cave, Arkansas (USA). Only small fragments can sometimes be transparent. Cut crystals are very rare and mostly in private collections.
Read More
Arrow
Img topic
Tetrahedrite
Tetrahedrite is a more complex mineral, as it contains iron, silver, zinc, and up to 15% copper. It is mined for its copper content, but occasionally heavy silver saturations make it even more desirable. The unique tetrahedral shape of the crystals makes them quite fetching additions to a rock collection.
Read More
Arrow
Img topic
Mimetite
Mimetite is an often yellow, yellow-brown, or vermillion-colored mineral that is commonly mistaken for its close mineralogical cousin, pyromorphite. The mineral's name, which stems from the Greek word for "impostor", is a reference to this fact. A rather rare mineral, mimetite is very occasionally mined for its lead content. Specimens with impressive crystal structures or colorations are sought after by collectors.
Read More
Arrow
Img topic
Chrysoberyl
Chrysoberyl is the third hardest gemstone-producing mineral. Some of its gems display color-changing properties or a "cat's eye" effect: a bright, narrow streak appears across the middle of a circular-cut stone, which changes with the angle of the light. Both Alexandrite and Cat’s Eye are famous variants of this mineral that capitalize on this property. Although it is similarly named, chrysoberyl is unrelated to beryl.
Read More
Arrow
Img topic
Carrollite
Carrollite got its name from where it was discovered - Carroll County in Maryland, USA. The mineral is found in hydrothermal deposits and is often associated with a number of other minerals such as Pyrite, Chalcocite, Chalcopyrite, and many others. The most beautiful of its octahedral crystals come from the mines of the Democratic Republic of Congo.
Read More
Arrow
Img topic
Hydromagnesite
Hydromagnesite is formed when certain magnesium-containing minerals are weathered down. The mineral not particularly common, and it's most often found in caves, so most people don't have much direct contact with it. Because it gives off water and carbon dioxide when it decomposes, hydromagnesite is used in flame retardants.
Read More
Arrow