Lorándite is a thallium arsenic sulfosalt with the chemical formula: TlAsS2. Though rare, it is the most common thallium-bearing mineral. Lorandite occurs in low-temperature hydrothermal associations and in gold and mercury ore deposits. Associated minerals include stibnite, realgar, orpiment, cinnabar, vrbaite, greigite, marcasite, pyrite, tetrahedrite, antimonian sphalerite, arsenic and barite. The mineral is being used for detection of solar neutrino via a certain nuclear reaction involving thallium. It has a monoclinic crystal structure consisting of spiral chains of AsS3 tetrahedra interconnected by thallium atoms, and can be synthesized in the laboratory.
Hardness:
2 - 2.5
Density:
5.53 g/cm³
On This Page
Properties
Characteristics
Cultural
Common Questions
General Info About Lorándite
Instantly Identify Rocks with a Snap
Snap a photo for instant rock/gemstone/mineral ID and properties analysis, gaining quick insights on characteristics, market value, collecting tips, care, real vs fake, and health risks, etc.
Download the App for Free
Physical Properties of Lorándite
Colors
Cochineal- to carmine-red; often dark lead-gray on the surface and frequently coated by an ochre-yellow powder.
Streak
Cherry-red
Hardness
2 - 2.5 , Extremely soft
Density
5.53 g/cm³, Obviously Heavy Weight
AI rock expert in your pocket
Chemical Properties of Lorándite
Formula
TlAsS2
Elements listed
As, S, Tl
Characteristics of Lorándite
Your Comprehensive Rock Characteristics Guide
In-depth exploration of rock types, features, and formation aspects
Download the App for Free
Composition of Lorándite
The crystal structure of lorandite is monoclinic, space group P21/a, Z = 4, with the lattice constants a = 1.228 nm, b = 1.130 nm, c = 0.6101 nm and β = 104.5 °. It consists of spiral chains of AsS3 tetrahedra oriented to the [010] crystal axis. The chains are covalently interlinked by irregularly coordinated Tl atoms (chain interconnections not shown in the picture), and breaking of these links is responsible for crystal cleavage.
Cultural Significance of Lorándite
Your Ultimate Guide to Understanding Rock Culture
Unveiling the mysteries of rock culture - exploring uses, history, and healing properties, etc
Download the App for Free
Uses of Lorándite
In 1976, it was proposed to use a thallium-rich mineral, lorándite, for detection of solar neutrino. The method relies on the Tl(νe,e)Pb reaction which has a relatively low threshold energy of 52 keV and thus relatively high efficiency. This reaction yields Pb isotope which has a long lifetime of 15.4 million years; it is induced not only by neutrinos, but also by other cosmic particles. They all have different penetration depth in the Earth crust, and thus analysis of the Pb content in a thallium-containing ore taken from different depths brings information on the neutrinos of the past millennia. Thus, the LORandite EXperiment (LOREX), is running between 2008 and 2010 and is based in one of the largest source of lorandite, the Allchar deposit in southern Macedonia.
Distribution of Lorándite
Apart from the Allchar deposit in Macedonia, lorandite is also found at the Dzhizhikrut Sb–Hg deposit in Tajikistan and at the Beshtau uranium deposit, near Pyatigorsk, northern Caucasus Mountains, Russia. As an ore mineral, it is encountered at the Lanmuchang Hg–Tl deposit, Guizhou Province, China; at the Zarshuran gold deposit in northeastern Iran; and at the Lengenbach Quarry in Switzerland. In the US, it is present at the New Rambler Cu–Ni mine in Wyoming; at the Jerritt Canyon mines, Independence Mountains district and Carlin Gold mine in Nevada; and at the Mercur gold deposit in Utah.
Common Questions People Also Ask
Get Quick Rock Answers with a Snap
Snap a photo for instant rock ID and answers on characteristics, market value, collecting tips, care, real vs fake, and health risks, etc.
Download the App for Free
Get Rock Identifier now
Try out Rock Identifier app on your phone and identify thousands of rocks for free
Learn more info about rocks from our rich and growing database.
Scan QR code to download
Get Rock Identifier now
Try out Rock Identifier app on your phone and identify thousands of rocks for free
Learn more info about rocks from our rich and growing database.