In 1924, indium was found to have a valued property of stabilizing non-ferrous metals, and that became the first significant use for the element. The first large-scale application for indium was coating bearings in high-performance aircraft engines during World War II, to protect against damage and corrosion; this is no longer a major use of the element. New uses were found in fusible alloys, solders, and electronics. In the 1950s, tiny beads of indium were used for the emitters and collectors of PNP alloy-junction transistors. In the middle and late 1980s, the development of indium phosphide semiconductors and indium tin oxide thin films for liquid-crystal displays (LCD) aroused much interest. By 1992, the thin-film application had become the largest end use. Indium(III) oxide and indium tin oxide (ITO) are used as a transparent conductive coating on glass substrates in electroluminescent panels. Indium tin oxide is used as a light filter in low-pressure sodium-vapor lamps. The infrared radiation is reflected back into the lamp, which increases the temperature within the tube and improves the performance of the lamp. Indium has many semiconductor-related applications. Some indium compounds, such as indium antimonide and indium phosphide, are semiconductors with useful properties: one precursor is usually trimethylindium (TMI), which is also used as the semiconductor dopant in II–VI compound semiconductors. InAs and InSb are used for low-temperature transistors and InP for high-temperature transistors. The compound semiconductors InGaN and InGaP are used in light-emitting diodes (LEDs) and laser diodes. Indium is used in photovoltaics as the semiconductor copper indium gallium selenide (CIGS), also called CIGS solar cells, a type of second-generation thin-film solar cell. Indium is used in PNP bipolar junction transistors with germanium: when soldered at low temperature, indium does not stress the germanium. Indium wire is used as a vacuum seal and a thermal conductor in cryogenics and ultra-high-vacuum applications, in such manufacturing applications as gaskets that deform to fill gaps. Indium is an ingredient in the gallium–indium–tin alloy galinstan, which is liquid at room temperature and replaces mercury in some thermometers. Other alloys of indium with bismuth, cadmium, lead, and tin, which have higher but still low melting points (between 50 and 100 °C), are used in fire sprinkler systems and heat regulators. Indium is one of many substitutes for mercury in alkaline batteries to prevent the zinc from corroding and releasing hydrogen gas. Indium is added to some dental amalgam alloys to decrease the surface tension of the mercury and allow for less mercury and easier amalgamation. Indium's high neutron-capture cross-section for thermal neutrons makes it suitable for use in control rods for nuclear reactors, typically in an alloy of 80% silver, 15% indium, and 5% cadmium. In nuclear engineering, the (n,n') reactions of In and In are used to determine magnitudes of neutron fluxes. In 2009, Professor Mas Subramanian and associates at Oregon State University discovered that indium can be combined with yttrium and manganese to form an intensely blue, non-toxic, inert, fade-resistant pigment, YInMn blue, the first new blue pigment discovered in 200 years.