Try for Free
tab list
Rock Identifier
English
arrow
English
繁體中文
日本語
Español
Français
Deutsch
Pусский
Português
Italiano
한국어
Nederlands
العربية
Home Application Download FAQ
English
English
繁體中文
日本語
Español
Français
Deutsch
Pусский
Português
Italiano
한국어
Nederlands
العربية

Indium

Indium

A species of Minerals

Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts per million of the Earth's crust. Indium has a melting point higher than sodium and gallium, but lower than lithium and tin. Chemically, indium is similar to gallium and thallium, and it is largely intermediate between the two in terms of its properties. Indium was discovered in 1863 by Ferdinand Reich and Hieronymous Theodor Richter by spectroscopic methods. They named it for the indigo blue line in its spectrum. Indium was isolated the next year. Indium is a minor component in zinc sulfide ores and is produced as a byproduct of zinc refinement. It is most notably used in the semiconductor industry, in low-melting-point metal alloys such as solders, in soft-metal high-vacuum seals, and in the production of transparent conductive coatings of indium tin oxide (ITO) on glass. Indium is considered a technology-critical element. Indium has no biological role. Its compounds are toxic when injected into the bloodstream. Most occupational exposure is through ingestion, from which indium compounds are not absorbed well, and inhalation, from which they are moderately absorbed.

Hardness
Hardness:

3

General Info About Indium

Instantly Identify Rocks with a Snap
Snap a photo for instant rock/gemstone/mineral ID and properties analysis, gaining quick insights on characteristics, market value, collecting tips, care, real vs fake, and health risks, etc.
Download the App for Free

Physical Properties of Indium

Colors
Grey
Hardness
3 , Soft
qrcode
Img download isoImg download android

Chemical Properties of Indium

Formula
In
Elements listed
In

Characteristics of Indium

Your Comprehensive Rock Characteristics Guide
In-depth exploration of rock types, features, and formation aspects
Download the App for Free

Formation of Indium

Indium is created by the long-lasting (up to thousands of years) s-process (slow neutron capture) in low-to-medium-mass stars (range in mass between 0.6 and 10 solar masses). When a silver-109 atom captures a neutron, it transmutes into silver-110, which then undergoes beta decay to become cadmium-110. Capturing further neutrons, it becomes cadmium-115, which decays to indium-115 by another beta decay. This explains why the radioactive isotope is more abundant than the stable one. The stable indium isotope, indium-113, is one of the p-nuclei, the origin of which is not fully understood; although indium-113 is known to be made directly in the s- and r-processes (rapid neutron capture), and also as the daughter of very long-lived cadmium-113, which has a half-life of about eight quadrillion years, this cannot account for all indium-113. Indium is the 68th most abundant element in Earth's crust at approximately 50 ppb. This is similar to the crustal abundance of silver, bismuth and mercury. It very rarely forms its own minerals, or occurs in elemental form. Fewer than 10 indium minerals such as roquesite (CuInS2) are known, and none occur at sufficient concentrations for economic extraction. Instead, indium is usually a trace constituent of more common ore minerals, such as sphalerite and chalcopyrite. From these, it can be extracted as a by-product during smelting. While the enrichment of indium in these deposits is high relative to its crustal abundance, it is insufficient, at current prices, to support extraction of indium as the main product. Different estimates exist of the amounts of indium contained within the ores of other metals. However, these amounts are not extractable without mining of the host materials (see Production and availability). Thus, the availability of indium is fundamentally determined by the rate at which these ores are extracted, and not their absolute amount. This is an aspect that is often forgotten in the current debate, e.g. by the Graedel group at Yale in their criticality assessments, explaining the paradoxically low depletion times some studies cite.

Cultural Significance of Indium

Your Ultimate Guide to Understanding Rock Culture
Unveiling the mysteries of rock culture - exploring uses, history, and healing properties, etc
Download the App for Free

Uses of Indium

In 1924, indium was found to have a valued property of stabilizing non-ferrous metals, and that became the first significant use for the element. The first large-scale application for indium was coating bearings in high-performance aircraft engines during World War II, to protect against damage and corrosion; this is no longer a major use of the element. New uses were found in fusible alloys, solders, and electronics. In the 1950s, tiny beads of indium were used for the emitters and collectors of PNP alloy-junction transistors. In the middle and late 1980s, the development of indium phosphide semiconductors and indium tin oxide thin films for liquid-crystal displays (LCD) aroused much interest. By 1992, the thin-film application had become the largest end use. Indium(III) oxide and indium tin oxide (ITO) are used as a transparent conductive coating on glass substrates in electroluminescent panels. Indium tin oxide is used as a light filter in low-pressure sodium-vapor lamps. The infrared radiation is reflected back into the lamp, which increases the temperature within the tube and improves the performance of the lamp. Indium has many semiconductor-related applications. Some indium compounds, such as indium antimonide and indium phosphide, are semiconductors with useful properties: one precursor is usually trimethylindium (TMI), which is also used as the semiconductor dopant in II–VI compound semiconductors. InAs and InSb are used for low-temperature transistors and InP for high-temperature transistors. The compound semiconductors InGaN and InGaP are used in light-emitting diodes (LEDs) and laser diodes. Indium is used in photovoltaics as the semiconductor copper indium gallium selenide (CIGS), also called CIGS solar cells, a type of second-generation thin-film solar cell. Indium is used in PNP bipolar junction transistors with germanium: when soldered at low temperature, indium does not stress the germanium. Indium wire is used as a vacuum seal and a thermal conductor in cryogenics and ultra-high-vacuum applications, in such manufacturing applications as gaskets that deform to fill gaps. Indium is an ingredient in the gallium–indium–tin alloy galinstan, which is liquid at room temperature and replaces mercury in some thermometers. Other alloys of indium with bismuth, cadmium, lead, and tin, which have higher but still low melting points (between 50 and 100 °C), are used in fire sprinkler systems and heat regulators. Indium is one of many substitutes for mercury in alkaline batteries to prevent the zinc from corroding and releasing hydrogen gas. Indium is added to some dental amalgam alloys to decrease the surface tension of the mercury and allow for less mercury and easier amalgamation. Indium's high neutron-capture cross-section for thermal neutrons makes it suitable for use in control rods for nuclear reactors, typically in an alloy of 80% silver, 15% indium, and 5% cadmium. In nuclear engineering, the (n,n') reactions of In and In are used to determine magnitudes of neutron fluxes. In 2009, Professor Mas Subramanian and associates at Oregon State University discovered that indium can be combined with yttrium and manganese to form an intensely blue, non-toxic, inert, fade-resistant pigment, YInMn blue, the first new blue pigment discovered in 200 years.

Common Questions People Also Ask

Get Quick Rock Answers with a Snap
Snap a photo for instant rock ID and answers on characteristics, market value, collecting tips, care, real vs fake, and health risks, etc.
Download the App for Free

More Rocks You Might Enjoy

Img topic
Clinohedrite
Clinohedrite is a rare silicate mineral. Its chemical composition is a hydrous calcium-zinc silicate; CaZn(SiO4)·H2O. It crystallizes in the monoclinic system and typically occurs as veinlets and fracture coatings. It is commonly colorless, white to pale amethyst in color. It has perfect cleavage and the crystalline habit has a brilliant luster. It has a Mohs hardness of 5.5 and a specific gravity of 3.28 - 3.33. Under short wave ultraviolet light it fluoresces a rich orange color. It is frequently associated with minerals such as hardystonite (fluoresces violet blue), esperite (fluoresces bright yellow), calcite (fluoresces orange-red), franklinite (non-fluorescent) and willemite (fluoresces green). Clinohedrite was found primarily at the Franklin zinc mines in New Jersey, the type locality, but has also been reported from the Christmas mine, Gila County, Arizona, and the Western Quinling gold belt, Gansu Province, China. It was first described in 1898 and was named for its crystal morphology from the Greek klino for incline, and hedra for face.
Read More
Arrow
Img topic
Andorite (iv/vi)
Andorite is a sulfosalt mineral with the chemical formula PbAgSb3S6. It was first described in 1892 for an occurrence in the Baia Sprie mine, Baia Sprie, Maramures County, Romania, and named for Hungarian amateur mineralogist Andor von Semsey (1833–1923). Andorite occurs in low-temperature polymetallic hydrothermal veins. It occurs associated with stibnite, sphalerite, baryte, fluorite, siderite, cassiterite, arsenopyrite, stannite, zinkenite, tetrahedrite, pyrite, alunite, quartz, pyrargyrite, stephanite and rhodochrosite.
Read More
Arrow