Glauconite is an iron potassium phyllosilicate (mica group) mineral of characteristic green color which is very friable and has very low weathering resistance. It crystallizes with a monoclinic geometry. Its name is derived from the Greek glaucos (γλαυκος) meaning 'blue', referring to the common blue-green color of the mineral; its sheen (mica glimmer) and blue-green color. Its color ranges from olive green, black green to bluish green, and yellowish on exposed surfaces due to oxidation. In the Mohs scale it has hardness of 2. The relative specific gravity range is 2.4 - 2.95. It is normally found in dark green rounded brittle pellets, and with the dimension of a sand grain size. It can be confused with chlorite (also of green color) or with a clay mineral. Glauconite has the chemical formula (K,Na)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2. Glauconite particles are one of the main components of greensand, glauconitic silstone and glauconitic sandstone. Glauconite has been called a marl in an old and broad sense of that word. Thus references to "greensand marl" sometimes refer specifically to glauconite. The Glauconitic Marl formation is named after it, and there is a Glauconitic Sandstone formation in the Mannville Group of Western Canada.
On This Page
Properties
Characteristics
Common Questions
General Info About Glauconite
Instantly Identify Rocks with a Snap
Snap a photo for instant rock/gemstone/mineral ID and properties analysis, gaining quick insights on characteristics, market value, collecting tips, care, real vs fake, and health risks, etc.
Download the App for Free
AI rock expert in your pocket
Characteristics of Glauconite
Your Comprehensive Rock Characteristics Guide
In-depth exploration of rock types, features, and formation aspects
Download the App for Free
Formation of Glauconite
At the broadest level, glauconite is an authigenic mineral and forms exclusively in marine settings. It is commonly associated with low-oxygen conditions. Normally, glauconite is considered a diagnostic mineral indicative of continental shelf marine depositional environments with slow rates of accumulation. For instance, it appears in Jurassic/lower Cretaceous deposits of greensand, so-called after the coloration caused by glauconite. It can also be found in sand or clay formations, or in impure limestones and in chalk. It develops as a consequence of diagenetic alteration of sedimentary deposits, bio-chemical reduction and subsequent mineralogical changes affecting iron-bearing micas such as biotite, and is also influenced by the decaying process of organic matter degraded by bacteria in marine animal shells. Glauconite forms under reducing conditions in sediments and such deposits are commonly found in nearshore sands, open oceans and the Mediterranean Sea. Glauconite remains absent in fresh-water lakes, but is noted in shelf sediments of the western Black Sea. The wide distribution of these sandy deposits was first made known by naturalists on board the fifth HMS Challenger, in the expedition of 1872–1876.
Common Questions People Also Ask
Get Quick Rock Answers with a Snap
Snap a photo for instant rock ID and answers on characteristics, market value, collecting tips, care, real vs fake, and health risks, etc.
Download the App for Free
Get Rock Identifier now
Try out Rock Identifier app on your phone and identify thousands of rocks for free
Learn more info about rocks from our rich and growing database.
Scan QR code to download
Get Rock Identifier now
Try out Rock Identifier app on your phone and identify thousands of rocks for free
Learn more info about rocks from our rich and growing database.